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Abstract

We explore the correctness of the Certified Propagation Algorithm (CPA)

[6, 1, 8, 5] in solving broadcast with locally bounded Byzantine faults. CPA

allows the nodes to use only local information regarding the network topology.

We provide a tight necessary and sufficient condition on the network topology

for the correctness of CPA.
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1. Introduction

In this work, we explore fault-tolerant broadcast with locally bounded

Byzantine faults in synchronous point-to-point networks. We assume a f -

locally bounded model, in which at most f Byzantine faults occur in the

neighborhood of every fault-free node [6]. In particular, we are interested

in the necessary and sufficient condition on the underlying communication

network topology for the correctness of the Certified Propagation Algorithm
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NF-0710287. Any opinions, findings, and conclusions or recommendations
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views of the funding agencies or the U.S. government.
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(CPA) – the CPA algorithm has been analyzed in prior work [6, 1, 8, 5, 7].

Problem Formulation. Consider an arbitrary directed network of n nodes.

One node in the network, called the source (s), is given an initial input,

which the source node needs to transmit to all the other nodes. The source

s is assumed to be fault-free. We say that CPA is correct, if it satisfies the

following properties, where xs denotes the input at source node s:

• Termination: every fault-free node i eventually decides on an output

value yi.

• Validity: for every fault-free node i, its output value yi equals the

source’s input, i.e., yi = xs.

We study the condition on the network topology for the correctness of CPA.

Related Work. Several researchers have addressed CPA problem. [6] stud-

ied the problem in an infinite grid. [1] developed a sufficient condition in

the context of arbitrary network topologies, but the sufficient condition pro-

posed is not tight. [8] provided necessary and sufficient conditions, but the

two conditions are not identical (not tight). [5] provided another condition

that can approximate (within a factor of 2) the largest f for which CPA is

correct in a given graph. Independently, [7] presented the tight condition in

undirected graphs. Similar condition under other contexts are also discovered

by other researchers [9, 3]. Please refer to [11] for more discussions.

System Model. The synchronous communication network consisting of n nodes

including source node s is modeled as a simple directed graph G(V , E), where

V is the set of n nodes, and E is the set of directed edges between the nodes
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in V . Node i can transmit messages to another node j if and only if the

directed edge (i, j) is in E . Each node can transmit messages to itself as well;

however, for convenience, we exclude self-loops from set E . That is, (i, i) 6∈ E

for i ∈ V . All the links (i.e., communication channels) are assumed to be

point-to-point, reliable, FIFO (first-in first-out) and deliver each transmitted

message exactly once. With a slight abuse of terminology, we will use the

terms edge and link interchangeably.

For each node i, let N−i be the set of nodes from which i has incoming

edges, i.e., N−i = { j | (j, i) ∈ E }. Similarly, define N+
i as the set of nodes

to which node i has outgoing edges, i.e., N+
i = { j | (i, j) ∈ E }. Nodes in

N−i and N+
i are, respectively, said to be incoming and outgoing neighbors of

node i. Since we exclude self-loops from E , i 6∈ N−i and i 6∈ N+
i . However,

we note again that each node can indeed transmit messages to itself.

We consider the f -local fault model, with at most f incoming neighbors

of any fault-free node becoming faulty. [6, 1, 8, 5, 7] also explored this fault

model. Yet, to the best of our knowledge, the tight necessary and sufficient

conditions for the correctness of CPA in directed networks under f -local fault

model have not been developed previously.

2. Feasibility of CPA under f-local fault model

Certified Propagation Algorithm (CPA). We first describe the Certified Prop-

agation Algorithm (CPA) from [6] formally. Note that the faulty nodes

may deviate from this specification arbitrarily. Possible misbehavior includes

sending incorrect and mismatching messages to different outgoing neighbors.

Source node s commits to its input xs at the start of the algorithm, i.e.,
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sets its output equal to xs. The source node is said to have committed to xs

in round 0. The algorithm for each round r (r > 0), is as follows:

1. Each node that commits in round r − 1 to some value x, transmits

message x to all its outgoing neighbors, and then terminates.

2. If any node receives message x directly from source s, it commits to

output x.

3. Through round r, if a node has received messages containing value x

from at least f + 1 distinct incoming neighbors, then it commits to

output x.

The Necessary Condition. For CPA to be correct, the network graph G(V , E)

must satisfy the necessary condition proved in this section. We borrow two

relations ⇒ and 6⇒ from our previous paper [12].

Definition 1. For non-empty disjoint sets of nodes A and B,

• A ⇒ B iff there exists a node v ∈ B that has at least f + 1 distinct

incoming neighbors in A, i.e., |N−v ∩ A| > f .

• A 6⇒ B iff A⇒ B is not true.

Definition 2. Set F ⊆ V is said to be a feasible f -local fault set, if for each

node v 6∈ F , F contains at most f incoming neighbors of node v. That is,

for every v ∈ V − F, |N−v ∩ F | ≤ f .

We now derive the necessary condition on the network topology.
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Theorem 1. Suppose that CPA is correct in graph G(V , E) under the f -local

fault model. Let sets F,L,R form a partition2 of V, such that (i) source

s ∈ L, (ii) R is non-empty, and (iii) F is a feasible f -local fault set. Then

• L⇒ R, or

• R contains an outgoing neighbor of s, i.e., N+
s ∩R 6= ∅.

Proof. The proof is by contradiction. Consider any partition F,L,R such

that s ∈ L, R is non-empty, and F is a feasible f -local fault set. Suppose

that the input at s is xs. Consider any single execution of the CPA algorithm

such that the nodes in F behave as if they have crashed.

By assumption, CPA is correct in the given network under such a behavior

by the faulty nodes. Thus, all the fault-free nodes eventually commit their

output to xs. Let round r (r > 0), be the earliest round in which at least

one of the nodes in R commits to xs. Let v be one of the node in R that

commits in round r. Such a node v must exist since R is non-empty, and

it does not contain source node s. For node v to be able to commit, as per

specification of the CPA algorithm, either node v should receive the message

xs directly from the source s, or node v must have f + 1 distinct incoming

neighbors that have already committed to xs. By definition of node v, nodes

that have committed to xs prior to v must be outside R; since nodes in F

behave as crashed, these f + 1 nodes must be in L. Thus, either (s, v) ∈ E ,

or node v has at least f + 1 distinct incoming neighbors in set L.

2Sets X1, X2, X3, ..., Xp are said to form a partition of set X provided that (i)
∪1≤i≤pXi = X, and (ii) Xi ∩Xj = Φ if i 6= j.
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Sufficiency. We now show that the condition in Theorem 1 is also sufficient.

Theorem 2. If G(V , E) satisfies the condition in Theorem 1, then CPA is

correct in G(V , E) under the f -local fault model.

Proof. Suppose that G(V , E) satisfies the condition in Theorem 1. Let F ′ be

the set of faulty nodes. By assumption, F ′ is a feasible local fault set. Let

xs be the input at source node s. We will show that, (i) fault-free nodes do

not commit to any value other than xs (Validity), and, (ii) until all the fault-

free nodes have committed, in each round of CPA, at least one additional

fault-free node commits to value xs (Termination). The proof is by induction.

Induction basis: Source node s commits in round 0 to output equal to its

input xs. No other fault-free nodes commit in round 0.

Induction: Suppose that L is the set of fault-free nodes that have committed

to xs through round r, r ≥ 0. Thus, s ∈ L. Define R = V−L−F ′. If R = ∅,

then the proof is complete. Let us now assume that R 6= ∅.

Now consider round r + 1.

• Validity:

Consider any fault-free node u that has not committed prior to round

r+ 1 (i.e., u ∈ R). All the nodes in L have committed to xs by the end

of round r. Thus, in round r+1 or earlier, node u may receive messages

containing values different from xs only from nodes in F ′. Since there

are at most f incoming neighbors of u in F ′, node u cannot commit to

any value different from xs in round r + 1.

• Termination:
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By the condition in Theorem 1, there exists a node w in R such that

(i) node w has an incoming link from s, or (ii) node w has incoming

links from f + 1 nodes in L. In case (i), node w will commit to xs on

receiving xs from node s in round r+ 1 (in fact, r+ 1 in this case must

be 1). In case (ii), first observe that all the nodes in L from whom

node w has incoming links have committed to xs (by definition of L).

Then, node w will be able to commit to xs after receiving messages

from at least f + 1 incoming neighbors in L, since all nodes in L have

committed to xs by the end of round r by the definition of L.3 Thus,

node w will commit to xs in round r + 1.

This completes the proof.

3. Discussion

This section presents extensions and complexity of verifying the condition.

Due to space limitation, please refer to [11] for details.

CPA without prior knowledge of f . Given a graph G that can tolerate f -

local faults (where f is unknown), we construct a broadcast algorithm in G

without usage of f . The core idea is for each node to exhaustively test all

possible parameters by running n+ 1 instances of CPA algorithm in parallel.

Other Communication Model. In the broadcast model [6, 1], when a node

transmits a value, all of its outgoing neighbors receive this value identically.

3Since node w did not commit prior to round r + 1, it follows that at least one node in
L must have committed in round r.
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Thus, no node can transmit mismatching values to different outgoing neigh-

bors. In the asynchronous model [2], the algorithm may not proceed in

rounds, but a node still commits to value x either on receiving the value di-

rectly from s, or from f +1 nodes. Under both models, condition in Theorem

1 is both necessary and sufficient for the correctness of CPA. The claim for

asynchronous model may seem to contradict the FLP result [4]. However,

our claim assumes that the source node is fault-free, unlike [4].

Complexity. [7] proved that it is NP-hard to examine whether CPA is correct

in a given undirected graph. The condition in [7] is indeed equivalent to our

condition (condition in Theorem 1) in undirected graphs. Therefore, it is

NP-hard to examine whether a given graph satisfies our condition or not.

4. Conclusion

In this paper, we explore broadcast in arbitrary network using the CPA

algorithm in f -local fault model. In particular, we provide a tight necessary

and sufficient condition on the underlying network for the correctness of CPA.
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